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A Review on the Evolution of Vehicle Routing Problems

Rameshwar Dubey

ABSTRACT
This paper provides an indepth review on evolution of vehicle routing problems from savings matrix to time dependent
vehicle routing problems. It is suggested that as to how VRPBH framework of Goetschalckx and Jacobs-Blecha has
offered better solution to routing problems that Clarke-Wright Savings matrix and with the introduction of time -window
concept the result of heuristic has improved drastically. This is further extended by latest work on time dependent
variable vehicle routing algorithm.
Keywords : LHBH, GAP, Clarke-wright savings matrix, time dependent variable, vehicle routing problem.

1.  INTRODUCTION

THE vehicle routing problem (VRP) involves a
set of delivery customers to be serviced by a set

of vehicles housed at a depot or distribution center
(DC), located in the same geographical region as the
customers. The objective of the problem is to develop
a set of vehicle routes such that all delivery points are
serviced, the demands of the points assigned to each
route do not violate the capacity of the vehicle that
services the route, and the total distance traveled by
all vehicles is minimized [1].

The importance of VRPB is related to the very
large cost of physical distribution. The VRPB's
significance can also be attributed to the continuing
effort to reduce distribution costs by taking advantage
of the unused capacity of an empty vehicle traveling
back to the DC. The concept has helped Baroda
Union to redesign their supply chain. In addition,
government deregulation of interstate commerce
restrictions in the Motor Carrier Act of 1980 has made
it possible for backhauling to become a profitable
venture for any company with a large fleet of vehicles.
Commodities can now be backhauled not only for
the owning company, but also for other companies
who are willing to pay for the backhauls as though for
common carriage. A company in Michigan increased
its backhauling revenues from $697,000 to almost
$2 million in just two distribution centers [2]. Other
companies which are utilizing backhauling to generate
revenues include Frito-Lay, K Mart, and Friendly Ice
Cream [3]. Backhauling is truly emerging as an
untapped resource for improved productivity in
industry. This paper is organized as follows. A literature

review is given in Section 2, with some brief discussion
of consideration for the addition of backhaul
customers to the classical VRPB approaches. Also
in section 2.0 some of our previously published
background material is presented. Section 3 provides
an explanation of the LHBH solution algorithm. The
results of the computational study are detailed in
Section 4, and in Section 5 conclusions are discussed.
2. LITERATURE REVIEW

Solution methodologies for the classical VRP
include both exact and heuristic techniques. A
comprehensive literature review can be found in Bodin
et al., [4] and many other studies in the area of vehicle
routing have been reported in the years since. Golden
and Assad [5] provide an extensive review of the then-
recent on vehicle routing. This section will describe
how some of the methods for VRP could be adapted
to VRPB, and report on current VRPB research.
2.1 Exact Procedures

The standard VRP can be thought of as a special
case of VRPB, with the number of backhaul points
equal to one (the distribution center). Since VRP is
NP-complete (Lenstra and Rinnooy Kan, 1981), the
VRP with backhauls is also NP-complete. The
development of heuristic approaches is therefore a
reasonable approach for practical applications. An
exact procedure based on set covering was developed
by Yano et al., [6] for a special case of the VRPB.
Relaxing the special route conditions or increasing the
number of backhaul points would make this exact
procedure computationally intractable. Gelinas [7] also
developed an exact procedure for the VRPB with
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time windows which will be discussed in more detail.
2.2 Heuristic Procedures

The literature here proposes ways to solve the
backhaul routing problem based on some well-known
methods for the classical VRP. The solution
methodologies are categorized according to a scheme
suggested by Bodin et al. In addition to solution
methodologies, work has been done to develop
planning models for incorporating backhaul loads into
an existing transportation system. Jordan and Burns
[8, 9] examined the impact of backhauling on terminal
locations and developed a method for determining
which truckloads should be backhauled. Jordan
extended this work to include systems with more than
two terminals.
2.2.1 Cluster-first/Route-second: This strategy is
illustrated by the sweep algorithm of Gillett and Miller
[10]. The sweep approach can easily be extended to
the VRPB by truncating the clusters when either
linehaul or backhaul capacity is exceeded.

2.2.2 Route-first/Cluster-second : Extension of this
approach to VRPB can be accomplished by solving
a Traveling Salesman Problem (TSP) for the delivery
points, then solving a TSP for the pickup points.
Each of the large tours can be broken up into
individual delivery and pickup routes, which can then
be patched together to form line haul-backhaul routes.
Goetschalckx and Jacobs [11] investigated a similar
approach based on space filling curves. This method
is included in the experimental comparison in
Section 4.

2.2.3 Savings/Insertion :  This concept is a constructive
approach whereby a configuration of points is changed
to an alternative configuration which yields a 'savings'
in terms of a particular objective. Perhaps the most
widely known and used savings algorithm for the VRP
was developed by Clarke and Wright [12], Deif and
Bodin have proposed an extension of this algorithm
for VRPB. This modified Clarke-Wright method will
be described in detail .Golden et al., [13] and Casco
et al., [14] report on an insertion procedure for VRPB
where any VRP algorithm is used to initially sequence
the delivery customers. Once the line haul customers
are routed, the backhaul customers are inserted onto
the delivery routes according to an insertion criterion
based on a penalty for pickup before the end of the

delivery route. This is a relaxation of the line haul-
backhaul sequencing constraints. This approach is
most applicable to the cases where there are very
few backhaul points.

2.2.4 Improvement/Exchange :  Perhaps the best
known method is the r-opt algorithm of Lin and
Kernighan [15]. Other exchange procedures
exchange customers between routes, instead of within
routes. Such methods can easily be applied to a given
solution for VRPB by taking into account the
precedence relationship of deliveries before pickups
whenever an exchange is considered.

2.2.5 Optimization-Based Techniques : Min et al., [16]
develop a methodology for solving the VRPB when
multiple depots are involved, denoted by MDVRPB.
They use a decomposition approach, determining first
the delivery/pickup clusters, then assigning those
clusters to depots and routes, and finally the
sequencing of the route itself. In determining the
delivery/pickup clusters, they use a statistical clustering
method to take advantage of the spatial nature of the
problem. They claim that statistical clustering is
computationally more efficient than mathematical
programming clustering for large number of points. In
the second step, delivery route, pickup route, and
depot are assigned to each other by a three
dimensional assignment formulation (3DAP). They
solve only the linear relaxation for their example case.
Finally, the line haul-backhaul routes are constructed
by an optimal asymmetrical TSP algorithm, after all
the distances from pickup points to delivery points
have been set to infinity. Their method is
computationally efficient because, for their example,
the 3DAP can be solved with linear programming and
the number of points on the line haul-backhaul routes
is smaller than 19. Two acclaimed approaches for
VRP were presented by Fisher and Jaikumar [17,
18] and by Cullen et al., [19] and Cullen [20]. The
first approach is based on the Generalized Assignment
Problem and the second on Set Partitioning.
Desrochers et al., [21] present a set partitioning
algorithm for VRP with time windows (VRPTW)
which can be used to find optimal solutions to the
problem. Gelinas [22] has extended this work for
VRPB. There has apparently been no further
published work to date on optimization-based
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heuristic methods for VRPB.

2.3 Mathematical Model
Goetschalckx and Jacobs-Blecha [11] developed

an integer programming formulation for the VRPB
problem by extending the Fisher and Jaikumar [23]
formulation to include pickup points. The model
naturally decomposes into three sub problems. The
first two sub problems correspond to the clustering
decisions for the delivery customers and the pickup
customers, which are independent Generalized
Assignment Problems (GAP). The third sub problem
consists of K independent, single route TSPs, each
having one additional constraint, enforcing the
completion of all deliveries before any pickups can
be made. These precedence constraints impose a
dependency relationship on all the model components.
This relationship is also indicative of the importance
of the routing links adjoining delivery to pickup in each
route. They develop an efficient and effective heuristic
solution algorithm for this problem based on space
filling curves. Some of the properties of the VRPB
are discussed in the next section, which leads to the
algorithm specification in Section 3.0.
2.4 Worst-case Bounds

Jacobs-Blecha (1987) showed that for Euclidean
distances the VRPB routes will never be more
expensive than executing separate delivery and pickup
routes. The best savings occurs when the pickup and
delivery customers are all collinear with the DC, and
the pickup and delivery locations farthest from the
DC are coincident. This example shows that the
maximum savings achievable by backhauling is 50%,
as opposed to sending a separate and independent
truck for the backhauling. Jacobs-Blecha [24] also
derived a worst case bound equal to 3 for the a simple
heuristic for the VRPB by extending the results of
Haimovich and Rinnooy Kan [25] for the classical
VRP, whose bound equals 2.
3. LHBH: A GENERALIZED ASSIGNMENT
    HEURISTIC

The fundamental structure of a VRPB route
consists of three parts. The first is a Hamiltonian path
from the DC through all delivery points, ending at the
delivery interface point. The second component is the
interface link between delivery and pickup customers.

Third is a Hamiltonian path from the DC through all
pickup points, terminating at the pickup interface point.
The set of delivery customers on the delivery path
comprises a sector of the plane anchored at the DC.
A similar sector is defined by the set of pickup
customers on the pickup path. Jacobs-Blecha (1987)
showed that the best savings from backhauling can
be attained by minimizing the angles of the delivery
and pickup sectors as well as the angle between the
delivery and pickup sectors. This property will be
exploited in the initialization phase of the LHBH
algorithm. The algorithm LHBH is based on the
Generalized Assignment Problem, and is similar to the
Fisher and Jaikumar GAP heuristic for VRP. However,
this method differs most from Fisher and Jaikumar's
approach in two respects. LHBH employs a fresh,
new method for executing the process known as route
seeding. In addition, the LHBH route seeds are
extended into unique, high quality route primitives by
exploiting the properties described in Sections 2.3
and 2.4.

The algorithm comprises three phases:
 Initialization
 Clustering and
 Sequencing.

In the initialization phase, an initial solution is
obtained and costs are estimated for solving the
clustering problem. In phase (2), the costs from (1)
are used to solve the Generalized Assignment Problem,
which allocates the delivery and pickup customers to
a set of minimal cost routes. Phase (3) is concerned
with solving the TSP for each cluster formed in (2),
taking into account the precedence relationship
described in section 2.3. The following sections will
explain each of these steps in further detail.
3.1 Clustering

In the clustering step of algorithm LHBH there are
two tasks to be accomplished: (1) determine the cost
of assigning a customer to a route, and (2) use the
costs to make the route assignments by solving the
Generalized Assignment Problem.

Once the seed radials have been established in
phase two, a route primitive is generated by choosing
points for the route that are near the seed radial. (In
this case, an angle "distance" of 10 degrees or less
was considered "near"). For each route, linehaul points
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are sequenced by increasing distance to the distribution
center and backhaul points by decreasing distance.
Any point which is within 10 degrees of more than
one seed radial is not placed in either primitive, and
left unassigned. This assignment of points results in a
polygonal route primitive from which the GAP costs
can be determined. Such a set of route primitives is
illustrated in Figure 2.

Fig. 1: Route Primitives for VRPB (Adapted from
Goetschalckx and Blecha)

Once the route primitives are found, the Euclidean
distance metric is used in the remainder of the clustering
phase. For problems where customers are randomly
located in the region around the DC, determining
routes that fit the model of minimal sector angles is
not likely to happen. In such cases, Euclidean distance
is a better estimator of nearness than the ring-radial
metric. In cases where customer locations are
naturally clustered, the ring-radial metric would be a
better choice. Since this study focuses on randomly
located customers, in the following discussion the
Euclidean metric is applied.

In LHBH, Martello and Toth's [26] savings regret
heuristic is implemented for solving the GAP. This
method assigns points to routes in a sequential manner
based on a computation of the regret to be
experienced by waiting until later to make the
assignment. Possible improvements to the resulting
routes are sought with the application of a Lagrangean
heuristic which will be described below. The cost of
assigning each remaining point i to route k is estimated
as the minimum insertion cost of point i into the links
of the primitive for route k. Since the savings regret
heuristic is sequential in it assignments, each time a
point is assigned to a route, the primitive for that route
grows and the insertion costs for points yet to be
assigned to that route may change. Thus, the cost

estimates for assigning the remaining points to the
growing route primitives change dynamically. It is a
simple computational update to keep the costs current
as the GAP is solved. This dynamic implementation
of the savings regret method has been implemented
in LHBH.The GAPs for VRPB are solved in two
stages. First, the dynamic sequential step builds a set
of customer-route assignments based on the savings
regret heuristic. Then, an improvement step is
implemented by applying a Lagrangean heuristic
developed by Jacobs [27]. This Lagrangean heuristic
takes an initial set of dual multipliers, solves the
Lagrangean to obtain a lower bound, adjusts the
solution to feasibility to obtain an upper bound, adjusts
the multipliers, and iterates. The procedure stops when
either the difference between the upper and lower
bounds is sufficiently close, or when a maximum
number of iterations have been executed.
3.2 Route Sequencing

The sequencing problem consists of a TSP for each
cluster with a side constraint restricting the tour to
only one link from delivery to pickup. A practical
solution method is to apply any construction heuristic
followed by 2-opt and 3-opt. Golden et al., [28] have
shown this to be on average within 2% of optimality
for the TSP which occurs in the classical VRP.
Goetschalckx and Jacobs have confirmed this for the
VRPB and have shown this to be the best tradeoff
between tour length and computation time. The best
sequence of points for a cluster is highly dependent
on the link selected as the interface between delivery
and pickup. The heuristic for approximating the best
sequence begins by determining a pair of artificial
interface points. The cluster of delivery points
geometrically defines a pie-shaped sector of the plane,
anchored at the DC, (see Figure 4). The two "corner"
points of this sector are candidates for the artificial
delivery interface point. Similarly, there are two
candidates for the artificial pickup interface point. The
closest pair of candidate points, one from each sector,
are selected as the initial interface points. Note that
these points are artificial in the true sense of the word.
It is likely that neither of them are actually located at a
customer site. This selection of interface points creates
an artificial interface link, joining the two sectors.
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Fig. 2: Artificial Sequencing Interface points
(Goetschalckx and Blecha)

Using the artificial interface link as the base, the
cheapest insertion procedure is performed to create
an initial feasible tour for the route. At this point, the
artificial interface points are discarded and the actual
interface points for pickup and delivery point are
designated as the current interface points. To allow
the two sides of the route to interact with each other
(as the mathematical model indicates  the case), two-
opt and three-opt are performed in a special way.
The current pickup interface point is "added" to the
delivery route and forced to remain as the final point
to be visited by setting its distance to the DC = -1.
The two-opt and three-opt procedure is then
performed on this set of points. Since the current
delivery interface point is not restricted from being
changed in the delivery route, the delivery interface
point is then updated. This procedure is now
performed for the pickup route, adding the current
delivery interface point to the set, as before. The
procedure then repeats until there is no further
reduction in the cost of the route. This procedure
converges quickly to an interface link which determines
a good sequence for the overall VRPB route.
3.3 Summary

Algorithm LHBH can now be specified as follows:
 Initialization. Find initial seed radials by solving

the location-allocation problem, utilizing the
ring-radial distance metric.

 Clustering. Find polygonal route primitives from
the current seed radials. Assign the delivery and
pickup points to the routes using a savings regret
heuristic, dynamically re-estimating the GAP
costs as the points are assigned. Attempt to
improve the route clusters by applying a
Lagrangean heuristic.

 Routing. Heuristically solve the special TSP
problem for each route by cheapest insertion,
using an iterative technique to search for a good
interface link. Apply two-opt and three-opt to
the resulting routes.

 Iteration. Using the ring-radial metric, locate a
new set of seed radials from the current route
clusters.

 Convergence. If the seed radials are
unchanged, or the maximum number of
iterations has been executed, then stop.
Otherwise, return to step 2.

4. TESTING AND EVALUATION
To evaluate the efficiency and effectiveness of the

LHBH heuristic, the algorithm is compared
computationally with three other algorithms for solving
the VRPB, providing results for both solution costs
and execution times (Goetschalckx and Blecha).
4.1 Clarke-Wright Savings Heuristic for
VRPB

Clarke and Wright (1964) developed an algorithm
for the vehicle routing problem based on the
computation of a savings for combining two customers
into the same route. Initially, each customer is
considered to be on a separate route. The savings Sv
for combining points i and j into a single route for a
symmetric distance matrix is then computed as:

Sv = d0i + d0j - dv
where dab is the distance from point a to point b

and point 0 is the DC.  Sv is computed for every pair
of points i and j and arranged in non-increasing
order.

Deif and Bodin [29] proposed an extension of this
algorithm in an effort to produce good solutions to
the VRPB. Their procedure is based on two
modifications to the original Clarke-Wright algorithm.
The first modification adds the constraint that only
one link from delivery to pickup (or vice versa) is
allowed on any route. Second, the definition of savings
is modified to include a penalty to reduce the size of
savings for a changeover from delivery to pickup. The
modified savings computation is:

Sv = d0i + 0j - dv =  S
 where  S  is an estimate of the maximum value of

savings and   is a penalty multiplier. If i and j are
either delivery points, or both pickup points, then
is 0. The maximum savings is estimated by as an
efficiency measure, since the savings list grows as a
quadratic function of the number of customers. The
penalty  reduces the size of the savings for a
changeover from delivery to pickup.
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4.2  Solving VRPB with Sequential VRPs
An alternative approach for solving the VRPB is

to treat the problem as two separate VRP's, forming
routes for the delivery points independently of the
pickup points, and vice versa. A solution to VRPB
can then be formed by simply patching the two sets
of routes into a single set of routes by matching the
delivery and pickup routes.

To solve the two separate routing problems, the
Generalized Assignment heuristic method, introduced
by Fisher and Jaikumar [30] was selected, and will
be referred to as ROVER. The ROVER algorithm is
a benchmark that includes an exact GAP solution,
developed by Fisher, Jaikumar, and Van Wassenhove
[31]. Once the VRPs are solved, the VRPB solution
is completed by pairing the delivery routes need with
the pickup routes. This can be accomplished by solving
a simple assignment problem with an appropriate
definition of the cost of assigning a pickup route to a
delivery route. Two approaches were developed.

The first approach is a simple one which is
computationally inexpensive. For each pair of routes,
only points adjacent to the depot on the separate
routes are considered as candidates for interface
points. This means that four pairs of delivery and
pickup points are considered, and the one yielding
the most savings in travel distance determines the
candidate interface link and the assignment cost for
that pair of routes. The cost matrix for the assignment
problem is found by computing this savings for all pairs
of routes from the VRP solutions. The VRPB
algorithm incorporating this simple matching solution
will be denoted by RVR. The first method of computing
the assignment costs clearly may not yield the best
pairing, nor the best interface links for the resulting
set of paired routes. To find the best set of interface
links for two given sets of delivery and pickup routes,
it is necessary to consider every delivery point with
every pickup point as a candidate interface, for every
pair of routes. For each of these candidates, a TSP
solution must then be computed, and the total cost of
the resulting routes compared. The TSP problems
were solved by cheapest insertion followed by 2-opt
and 3-opt. This time-consuming approach will be
referred to as RVRBST. A greedy nearest-neighbor
heuristic based on travel time between customers was
proposed, as well as a branch and cut algorithm to

solve TDVRP without time windows. Computational
results for one vehicle and five customers were
reported.  The modifications to the savings, insertion,
and local improvement algorithms to better deal with
TDVRP. In randomly generated instances, they
reported computation time reductions as a percentage
of "unmodified" savings, insertion, and local
improvement algorithms. An important property for
time dependent problems is the First In - First Out
(FIFO) property. A model with a FIFO property
guarantees that if a vehicle leaves customer i to go to
customer j at any time t, any identical vehicle with the
same destination leaving customer i at a time t+,
where >0, will always arrive later. This is an intuitive
and desirable property though it is not present in all
models. Earlier formulations and solutions methods,
Malandraki and Daskin (1989, 1992), Hill and Benton
(1992), and Malandraki and Dial (1996), do not
guarantee the FIFO property as reported by Ichoua
et al. (2003). Later research efforts have modeled
travel time variability using "constant speed" time
periods which guarantees the FIFO property, as
shown by Ichoua et al. (2003).Ichoua et al. (2003)
proposed a tabu search solution method, based on
the work of Taillard et al. (1997), in order to solve
time dependent vehicle routing problems with soft time
windows. Ichoua et al. showed that ignoring time
dependency, i.e. using VRP models with constant
speed, can lead to poor solutions. Ichoua et al. tested
their method using the Solomon problem set, soft time
windows, three time periods, and three types of time
dependent arcs. The objective was to minimize the
sum of total travel time plus penalties associated with
time window violations. Fleischmann et al. (2004)
utilized route construction methods already proposed
in the literature, savings and insertion, to solve
uncapacitated time dependent VRP with and without
time windows. Fleischmann et al. tested their
algorithms in instances created from Berlin travel time
data. Jung and Haghani proposed a genetic algorithm
to solve time dependent problems. Using randomly
generated test problems, the performance of the
genetic algorithm was evaluated by comparing its
results with exact solutions (up to 9 customers and
15 time periods) and a lower bound (up to 25
customers and 10 time periods). Ichoua et al. (2003)
used the widely known Solomon problems for the
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VRP with time windows. However, capacity
constraints were not considered, optimal fleet size was
given, and no details were provided regarding how
links were associated with "categories" that represent
differences in the urban network (i.e. main arteries,
local streets, etc.). Donati et al.  also used Solomon
instances, however, the results cannot be compared
with previous results by Ichoua et al  because a
different time speed function was used and capacity
constraints were considered. Comparisons are also
problematical because objective functions and routing
constraints for time dependent problems are often
dissimilar, unlike VRPTW research where the
objective function is hierarchical and usually considers
fleet size (primary objective), distance (secondary
objective), and total route duration. Ichoua et al. study
the TDVRP with soft time windows and consider as
the objective function total duration plus lateness and
assume that the optimal fleet size is given a priority
(Dubey et.al. [32].
5.  CONCLUSIONS AND FURTHER
      RESEARCH

The computational results indicate that the
proposed RD heuristics can solve soft and hard time
window time-dependent vehicle routing problems in
relatively small computation times. The analysis and
experimental results of the computational complexity
indicate that average computational time increases
proportionally to the square of the number of
customers. The solution quality of the new algorithm
appears to be comparable to other approaches that
can be used to solve constant speed and soft time
windows problems with time dependent speeds.
However, the proposed RD approach seems to have
an advantage in TDVRP with hard time windows;
problems that cannot be readily tackled by local search
heuristics and have not yet been studied in the
literature.
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