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I.  INTRODUCTION

A NON-FLATE n-dimensional Riemannian
manifold  (M, g)   is said to be a quasi Einstein

manifold [2] it its Ricci tensor satisfies

S(X, Y) = ag (X, Y) + b(X) (Y)  (1)

for all   Where and are smooth

functions and be a nonzero 1-form such that

      , , 1g X X     (2)

for the associated vector field  which is equivalent
to

 baIQ  (3)

The 1-form   is called the associated 1-form and
the unit vector field  is called the generator of the
manifold. If the generator    belongs to k-nullity dis-
tribution N(k) then the quasi Einstein manifold is called
as an N(k)-quasi Einstein manifold [8].

In [8], it was proved that a conformally flat quasi-
Einstein manifold is  N(k)-quasi Einstein. Conse-
quently, it was shown that a 3-dimensional quasi-
Einstein manifold is an N(k)-quasi - Einstein mani-
fold. The derivation conditions,  ( , ) 0R X R     and
 ( , ) 0R X S   were also studied, where R and S
denote the curvature and Ricci tensor respectively.
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On the other hand in [1] the derivative
conditions 0).,(,0).,(  RXZZXZ   and

0).,( ZXR   on contact metric manifolds are stud-
ied, where Z is concircular curvature tensor. In [7],
the condition 0).,( SXX   is studied. In [5],   N(k)-
quasi Einstein manifolds satisfying the conditions

0).,(,0).,(,0).,( 222  WXPSXWWXR 
where P  denotes the projective curvature tensor are
studied. In this paper, I study the derivation condi-
tions 0).,( 22 WXW   on an  N(k) -quasi Einstein
manifold. The paper is organized as follows : Section
2 contains necessary details about  N(k)-quasi Einstein
manifolds and the W2    curvature tensor. In section 3
the conditions 0).,( 22 WXW    on an N(k) -quasi
Einstein manifold is studied.
II. PRELIMINARIES

Let M be a (2n + 1) dimensional Riemannian mani-
fold. The W2-curvature tensor [4] is defined as

W X Y Z

R X Y Z
n

g Y Z QX
g X Y QY

X Y Z TM
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Where  R  is the Riemannian curvature tensor and
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Q is the Ricci operator defined as
 ( , ) ( , ), ,S X Y g Q X Y X Y T M  (5)
Equation (4) can also be written as

W X Y Z W R X Y Z W

n
g Y Z S X W g X Z S Y W
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       (6)

for all  , ,X Y Z TM
The k-nullity distribution N(k) [6] of a Rieman-

nian manifold M is defined by
 

   
( ) : ( )
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for all TMYX , , where     is some smooth func-
tion.
A. Definition [8]

The  N(k)  -quasi Einstein manifold is defined as:
 Let  (M2n+1;g)  be a quasi Einstein manifold. If the

generator   belongs to the k-nullity distribution  N(k)
for some smooth function k, then we say that (M2n+1;g)
is an N(k)-quasi Einstein manifold.
B. Lemma [3]

In an (2n+1)-dimensional N(k)- quasi Einstein
manifold it follows that
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a bk
n
  (7)

From equations (1) and (2) it follows that
      .,, TMXXbaXS  

  2 1r n a b    (8)
where r is the scalar curvature of  M.
Since

})()({),( YXXYkYXR   (9)
Using (7) in above equation we get

})()({
2

),(( YXXY
n
baYXR  


          (10)

which is equivalent to
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Taking X= ξ and Y=X in equation (10) we get

 })({
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),( XX
n
baXR 


             (12)

C. Proposition
In an    (2n+1)-dimensional    N(k)-quasi Einstein

manifold,  the W2 curvature tensor satisfies

))()((
2

),(2 YXXY
n

bYXW              (13)

 ),())((
2

),( 22 XWYY
n

bXW     (14)

0)),(( 2  YXW  (15)

)())((
2

),(2 ZYY
n

bZYW             (16)

0)),(( 2 ZYW            (17)

Proof - where N(k) - quasi

D. Theorem
Let  M   be (2n+1) dimensional N(k) quasi Einstein

manifold. If M satisfies the condition
0).,( 22 WXW   then M is Einstein and a = 0 .

Proof:

Let   ,0, 22 WXW  this implies
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 Using equations (14), (15) and (16) in above equa-
tion we get

        .
2

,2 ZYXXY
n

bZYXW  

Using (4) in above equation we get

R X Y Z W b
n

g X W Z g Y W X Z

n
g Y Z S X W g X Z S Y W

( , , , ) ( ( , ) ( ) ( , ) ( ) ( ))
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Contracting above equation and using eq. (1) and (8)
we get

0))()(),((
2

 ZYZYg
n

b 
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But   0,b  we get
)()(),( ZYZYg 

Using above equation in (1) we get
     .,, YXgbaYXS 
This equation shows that manifold is Einstein.

Contacting above equation and using (8) we get
 a = 0

Corollary:
 Let M be (2n + 1) dimensional N(k) quasi Einstein

manifold. If M satisfies the condition
  0, 22 WXW  .

Then

TMZYX

ZYXXY
n

bZYXR
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III. CONCLUSION
A (2n + 1)-dimensional N(k) - quasi Einstein mani-

fold M is Eistein if it satisfies the conditions of
0).,( 22 WXW  .
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